
Artificial Intelligence and Security Lab
Cyber Security Research Group
Delft University of Technology

Artificial Intelligence methods for the design of
cryptographic primitives

Luca Mariot

L.Mariot@tudelft.nl

AICrypt@EUROCRYPT 2021

Zagreb, October 16, 2021



Outline

Intro – AI in symmetric crypto

AI-based optimization methods in cryptography

AI-based computational models in cryptography

Conclusions

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Broader reference

This talk is based on the chapter:

L. Mariot, D. Jakobovic, T. Bäck,
J. Hernandez-Castro: Artificial In-
telligence Methods in Cryptogra-
phy. AI+Sec: Artificial Intelli-
gence and Security. Springer
(forthcoming)

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Outline

Intro – AI in symmetric crypto

AI-based optimization methods in cryptography

AI-based computational models in cryptography

Conclusions

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Primitives in symmetric crypto

K

PRNG

z⊕
PT CT

(a) Stream cipher

PT

S5S4S3S2S1 S6 S7 S8 S9 S10

π-box

⊕
Ki

CT

(b) Block cipher

Symmetric ciphers require several low-level primitives, such as:
I Pseudorandom number generators (PRNG)
I Boolean functions f : Fn

2→ F2 and S-boxes
I Permutation (diffusion) layers, ...

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



AI approaches to design symmetric primitives

I "Traditional" approach: ad-hoc and algebraic constructions to
choose primitives with specific security properties

I "AI" approach: support the designer in choosing the primitives
using AI methods/models from the following domains:
I Optimization (Evolutionary algorithms, swarm intelligence...)

χ point χ point

I Computational models (cellular automata, neural networks...)

1 0 0 1 1 0

⇓ F : {0,1}n → {0,1}m

01 0 0 0 1 0 1

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Outline

Intro – AI in symmetric crypto

AI-based optimization methods in cryptography

AI-based computational models in cryptography

Conclusions

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Combinatorial Optimization

I Combinatorial Optimization Problem: map P : I→S from a
set I of problem instances to a family S of solution spaces

I S = P(I) is a finite set equipped with a fitness function
fit : S → R, giving a score to candidate solutions x ∈ S

I Optimization goal: find x∗ ∈ S such that:

Minimization:

x∗ = argminx∈S {fit(x)}

Maximization:

x∗ = argmaxx∈S {fit(x)}

I Heuristic optimization algorithm: iteratively tweaks a set of
candidate solutions using fit to drive the search

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Evolutionary Algorithms (EA) – Genetic Algorithms (GA)

Optimization algorithms loosely based on evolutionary principles,
introduced respectively by J. Holland (1975) and J. Koza (1989)

I Work on a coding of the candidate solutions
I Evolve in parallel a population of solutions.
I Black-box optimization: use only the fitness function to

optimize the solutions.
I Use Probabilistic operators to evolve the solutions

GA Encoding: Typically, an individual is represented with a
fixed-length bitstring

10 1 1 1 0 0 0

⇓

f(x1,x2,x3) = x1 ·x2⊕x1⊕x2⊕x3

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Evolutionary Algorithms (EA) – Genetic Programming
(GP)

I GP Encoding: an individual is represented by a tree
I Terminal nodes: input variables of a program
I Internal nodes: operators (e.g. AND, OR, NOT, XOR, ...)

OR

f(x1,x2,x3,x4) = (x1 AND x2) OR (x3 XOR x4)

AND XOR

x1 x2 x3 x4

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



The EA Loop

Initialize
Population Selection

Crossover Mutation

Fitness
Evaluation

ReplaceTerminate?
Output Best

Solution Yes

No

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



EA in symmetric cryptography

Several design steps can be cast as combinatorial optimization
problems, such as the search of:
I Boolean functions f : Fn

2→ F2 for stream ciphers

LFSR 1 x1

LFSR 2 x2
...

...

f(x1,x2, · · · ,xn)

LFSR n xn

next bit

I S-Boxes F : Fn
2→ F

m
2 for block ciphers

Possible advantages of using EA for this search:
I Diversity of solutions, due to the "blindness" of EA
I Flexibility of EA (optimizing several properties at once)

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Design Criteria

Several properties to consider for thwarting attacks, e.g.:

A Boolean function used in the combiner model should:
I be balanced
I have high algebraic degree d
I have high nonlinearity nl(F)
I be resilient of high order t

A (n,n)-function used in the SPN paradigm should
I be balanced (⇔ bijective)
I have high nonlinearity NF

I have low differential uniformity δF

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Constructions of good Boolean Functions and S-Boxes

I Number of Boolean functions of n variables: 22n

n 3 4 5 6 7 8
22n

256 65536 4.3 ·109 1.8 ·1019 3.4 ·1038 1.2 ·1077

I ⇒ too huge for exhaustive search when n > 5!

In practice, one usually resorts to:
I Algebraic constructions (Maiorana-McFarland,

Rothaus,...) [Carlet21]
I Combinatorial optimization techniques

I Simulated Annealing [Clark04]
I Evolutionary Algorithms [Millan98, Picek16]
I Swarm Intelligence [M15] [Mariot15], ...

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Evolving Boolean Functions with GA

I GA encoding: represent the truth tables as 2n-bit strings
I Fitness function: combines nonlinearity, algebraic degree,

correlation-immunity
I Specialized crossover and mutation operators for preserving

balancedness

Crossover Idea: Use counters to keep track of the multiplicities of
zeros and ones [Millan98, Manzoni20]

10 0 1 0 1 1 0p1

χ⇒
1 0 0 0 1 0 1 1p2

1 1 0 0 1 1 0 0 c

count[1] = 4 fill with 0

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Evolving Boolean Functions with GP

I The truth table is synthesized from a GP tree:

∧

+ ¬

x1 x2 x3

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f(x)

0
0
1
0
1
0
0
0

I Difficult to enforce constraints on balancedness with
crossover and mutation

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Results – Comparisons between GA and GP

I GP and its variants generally fares better than GA on
optimizing Boolean functions [P16]

Source: S. Picek, D. Jakobovic, J. Miller, L. Batina, M. Cupic: Cryptographic Boolean

Functions: One Output, Many Design Criteria. Appl. Soft Comp. 40 (2016) 635–653

I Similar results to traditional algebraic constructions

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Outline

Intro – AI in symmetric crypto

AI-based optimization methods in cryptography

AI-based computational models in cryptography

Conclusions

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Cellular Automata

I One-dimensional Cellular Automaton (CA): a discrete parallel
computation model composed of a finite array of n cells

Example: n = 6, d = 3, ω= 0, f(si ,si+1,si+2) = si ⊕si+1 ⊕si+2 (rule 150)

1 0 0 1

f(1,0,0) = 1

01 0 0 0 1

No Boundary CA – NBCA

01 0 1 0 0

f(1,1,0) = 0

01 0 0 0 1 1 0

Periodic Boundary CA – PBCA

I Each cell updates its state s ∈ {0,1} by applying a local rule
f : {0,1}d → {0,1} to itself, the ω cells on its left and the
d −1−ω cells on its right

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Motivations

General Research Goal: Investigate cryptographic primitives
defined by Cellular Automata

1 0 0 1 1 0

⇓ F : {0,1}n → {0,1}m

01 0 0 0 1 0 1
Alice Encryption

KE

Channel

Oscar

Decryption

KD

Bob
PT CT CT PT

Why CA, anyway?

1. Security from Complexity: CA can yield very complex
dynamical behaviors, depending on the local rule

2. Efficient implementation: Leverage CA parallelism and
locality for lightweight cryptography

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



CA-based Crypto History: Wolfram’s PRNG

I CA-based Pseudorandom Generator (PRG) [Wolfram86]:
central cell of rule 30 CA used as a stream cipher keystream

Seed K

Keystream z

K

CA

z⊕
Encryption

PT CT

K

CA

z⊕
Decryption

CT PT

I Security claims based mainly on statistical/empirical tests
I This CA-based PRNG was later shown to be vulnerable,

improvements by choosing larger local rules [Leporati14]

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Real world CA-Based Crypto: Keccak χ S-box

I Local rule: χ(x1,x2,x3) = x1⊕ (1⊕ (x2 ·x3)) (rule 210)
I Invertible for every odd size n of the CA

I Used as a PBCA with n = 5 in the Keccak specification of
SHA-3 standard [Keccak11]

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Problem Statement

I Goal: Find PBCA of length n and diameter d = n:
I with cryptographic properties on par with those of other

real-world ciphers [Mariot19]
I with low implementation cost [Picek17]

I Considered S-boxes sizes: from n = 4 to n = 8
I Genetic Programming to address this problem
I Fitness function: optimize both crypto (nonlinearity,

differential uniformity) and implementation properties (GE
measure)

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Results

Table: Statistical results and comparison.

S-box size T_max GP NF δF

Max Avg Std
dev

4×4 16 16 16 0 4 4

5×5 42 42 41.73 1.01 12 2

6×6 86 84 80.47 4.72 24 4

7×7 182 182 155.07 8.86 56 2

8×8 364 318 281.87 13.86 82 20

I From n = 4 to n = 7, one obtains CA rules inducing S-boxes
with optimal crypto properties

I Only for n = 8 the performances of GP are consistently worse
wrt to the theoretical optimum

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



A Posteriori Analysis – Implementation Properties, n = 5

Table: Power is in nW , area in GE, and latency in ns. DPow: dynamic
power, LPow: cell leakage power

Size 5×5 Rule Keccak

DPow. 321.684LPow: 299.725Area: 17 Latency:0.14

Size 5×5 Rule ((v2 NOR NOT(v4)) XOR v1)

DPow. 324.849LPow: 308.418Area: 17 Latency:0.14

Size 5×5 Rule ((v4 NAND (v2 XOR v0)) XOR v1)

DPow. 446.782LPow: 479.33 Area: 24.06 Latency:0.2

Size 5×5 Rule (IF(v1, v2, v4) XOR (v0 NAND NOT(v3)))

DPow. 534.015LPow: 493.528Area: 26.67 Latency:0.17

I Results on par with the Keccak χ S-box

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Example of Optimal CA S-box found by GP

v4 v3 v2 v1 v0

o4 o3 o2 o1 o0

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Outline

Intro – AI in symmetric crypto

AI-based optimization methods in cryptography

AI-based computational models in cryptography

Conclusions

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



Conclusions and Perspectives

Summing up:
I Up to now, AI-based methods and models can help in solving

certain specific design problems for symmetric ciphers.
I Many more open directions remain!

Open questions:
I take into account other primitives (e.g. permutation layers)
I Have a better understanding of which algorithm works best to

evolve a Boolean function/S-box with certain properties (using
e.g. fitness landscape analsysis)

I Apply AI to other optimization problems in symmetric crypto
(e.g. rotation constants selection)

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives



References

[Keccak11] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche: The Keccak reference. (January 2011).
http://keccak.noekeon.org/

[Carlet21] C. Carlet: Boolean functions for cryptography and coding theory. Cambridge University Press (2021)

[Clark04] J. Clark, J. Jacob, S. Maitra, P. Stanica: Almost Boolean Functions: The Design of Boolean Functions by
Spectral Inversion. Computational Intelligence 20(3): 450-462 (2004)

[Leporati14] A. Leporati and L. Mariot: Cryptographic properties of bipermutive cellular automata rules. J. Cell.
Autom. 9(5-6):437–475 (2014)

[Manzoni20] L. Manzoni, L. Mariot, E. Tuba: Balanced crossover operators in Genetic Algorithms. Swarm Evol.
Comput. 54: 100646 (2020)

[Mariot15] L. Mariot, A. Leporati: Heuristic Search by Particle Swarm Optimization of Boolean Functions for
Cryptographic Applications. In: GECCO 2015 (Companion): 1425-1426. ACM (2015)

[Mariot19] L. Mariot, S. Picek, A. Leporati, and D. Jakobovic. Cellular automata based S-boxes. Cryptography and
Communications 11(1):41–62 (2019)

[Millan98] W. Millan, J. Clark, E. Dawson: Heuristic Design of Cryptographically Strong Balanced Boolean
Functions. Proceedings of EUROCRYPT 1998, pp. 489-499 (1998)

[Picek16] S. Picek, D. Jakobovic, J.F. Miller, L. Batina, M. Cupic: Cryptographic Boolean functions: One output,
many design criteria. Appl. Soft Comput. 40: 635-653 (2016)

[Picek17] S. Picek, L. Mariot, B. Yang, D. Jakobovic, N. Mentens: Design of S-boxes defined with cellular automata
rules. Conf. Computing Frontiers 2017: 409-414 (2017)

[Wolfram86] S. Wolfram. Cryptography with cellular automata. In CRYPTO ’85, pp. 429–432 (1986)

Luca Mariot Artificial Intelligence methods for the design of cryptographic primitives


	Intro – AI in symmetric crypto
	AI-based optimization methods in cryptography
	AI-based computational models in cryptography
	Conclusions

