

Artificial Intelligence and Security Lab Cyber Security Research Group Delft University of Technology

Artificial Intelligence methods for the design of cryptographic primitives

Luca Mariot

L.Mariot@tudelft.nl

AICrypt@EUROCRYPT 2021 Zagreb, October 16, 2021 Intro – Al in symmetric crypto

Al-based optimization methods in cryptography

Al-based computational models in cryptography

Conclusions

This talk is based on the chapter:

L. Mariot, D. Jakobovic, T. Bäck, J. Hernandez-Castro: Artificial Intelligence Methods in Cryptography. AI+Sec: Artificial Intelligence and Security. Springer (forthcoming)

Intro – AI in symmetric crypto

Al-based optimization methods in cryptography

Al-based computational models in cryptography

Conclusions

Luca Mariot

Primitives in symmetric crypto

(a) Stream cipher

(b) Block cipher

Symmetric ciphers require several low-level primitives, such as:

- Pseudorandom number generators (PRNG)
- ▶ Boolean functions $f : \mathbb{F}_2^n \to \mathbb{F}_2$ and S-boxes
- Permutation (diffusion) layers, ...

Al approaches to design symmetric primitives

- "Traditional" approach: ad-hoc and algebraic constructions to choose primitives with specific security properties
- "Al" approach: support the designer in choosing the primitives using AI methods/models from the following domains:
 - Optimization (Evolutionary algorithms, swarm intelligence...)

Computational models (cellular automata, neural networks...)

Intro – Al in symmetric crypto

Al-based optimization methods in cryptography

Al-based computational models in cryptography

Conclusions

Luca Mariot

- Combinatorial Optimization Problem: map P : I → S from a set I of problem instances to a family S of solution spaces
- S = P(I) is a finite set equipped with a fitness function fit : S → ℝ, giving a score to candidate solutions x ∈ S
- Optimization goal: find $x^* \in S$ such that:

Minimization: Maxim	ization:
---------------------	----------

- $x^* = \operatorname{argmin}_{x \in S} \{ \operatorname{fit}(x) \}$ $x^* = \operatorname{argmax}_{x \in S} \{ \operatorname{fit}(x) \}$
- Heuristic optimization algorithm: iteratively tweaks a set of candidate solutions using *fit* to drive the search

Evolutionary Algorithms (EA) – Genetic Algorithms (GA)

Optimization algorithms loosely based on evolutionary principles, introduced respectively by **J. Holland** (1975) and **J. Koza** (1989)

- Work on a coding of the candidate solutions
- Evolve in parallel a **population** of solutions.
- Black-box optimization: use only the fitness function to optimize the solutions.
- Use Probabilistic operators to evolve the solutions

GA Encoding: Typically, an individual is represented with a fixed-length bitstring

Evolutionary Algorithms (EA) – Genetic Programming (GP)

- GP Encoding: an individual is represented by a tree
 - Terminal nodes: input variables of a program
 - Internal nodes: operators (e.g. AND, OR, NOT, XOR, ...)

Several design steps can be cast as combinatorial optimization problems, such as the search of:

Boolean functions $f : \mathbb{F}_2^n \to \mathbb{F}_2$ for stream ciphers

▶ S-Boxes $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ for block ciphers

Possible advantages of using EA for this search:

- Diversity of solutions, due to the "blindness" of EA
- Flexibility of EA (optimizing several properties at once)

Several properties to consider for thwarting attacks, e.g.:

- A Boolean function used in the combiner model should:
 - be balanced
 - have high algebraic degree d
 - have high nonlinearity nl(F)
 - be resilient of high order t
- A (n, n)-function used in the SPN paradigm should
 - be balanced (\Leftrightarrow bijective)
 - have high nonlinearity N_F
 - have low differential uniformity δ_F

Constructions of good Boolean Functions and S-Boxes

Number of Boolean functions of n variables: 2^{2ⁿ}

▶ \Rightarrow too huge for exhaustive search when n > 5!

In practice, one usually resorts to:

- Algebraic constructions (Maiorana-McFarland, Rothaus,...) [Carlet21]
- Combinatorial optimization techniques
 - Simulated Annealing [Clark04]
 - Evolutionary Algorithms [Millan98, Picek16]
 - Swarm Intelligence [M15] [Mariot15], ...

Evolving Boolean Functions with GA

- GA encoding: represent the truth tables as 2ⁿ-bit strings
- Fitness function: combines nonlinearity, algebraic degree, correlation-immunity
- Specialized crossover and mutation operators for preserving balancedness

Crossover Idea: Use *counters* to keep track of the multiplicities of zeros and ones [Millan98, Manzoni20]

Evolving Boolean Functions with GP

The truth table is synthesized from a GP tree:

 Difficult to enforce constraints on balancedness with crossover and mutation

Luca Mariot

Results - Comparisons between GA and GP

 GP and its variants generally fares better than GA on optimizing Boolean functions [P16]

Source: S. Picek, D. Jakobovic, J. Miller, L. Batina, M. Cupic: Cryptographic Boolean Functions: One Output, Many Design Criteria. Appl. Soft Comp. 40 (2016) 635–653

Similar results to traditional algebraic constructions

Intro – Al in symmetric crypto

Al-based optimization methods in cryptography

AI-based computational models in cryptography

Conclusions

Luca Mariot

Cellular Automata

One-dimensional Cellular Automaton (CA): a discrete parallel computation model composed of a finite array of n cells

Example: n = 6, d = 3, $\omega = 0$, $f(s_i, s_{i+1}, s_{i+2}) = s_i \oplus s_{i+1} \oplus s_{i+2}$ (rule 150)

► Each cell updates its state $s \in \{0, 1\}$ by applying a local rule $f : \{0, 1\}^d \rightarrow \{0, 1\}$ to itself, the ω cells on its left and the $d-1-\omega$ cells on its right

General Research Goal: Investigate cryptographic primitives defined by Cellular Automata

Why CA, anyway?

- 1. **Security from Complexity**: CA can yield very complex dynamical behaviors, depending on the local rule
- 2. Efficient implementation: Leverage CA parallelism and locality for lightweight cryptography

CA-based Crypto History: Wolfram's PRNG

CA-based Pseudorandom Generator (PRG) [Wolfram86]: central cell of rule 30 CA used as a stream cipher keystream

- Security claims based mainly on statistical/empirical tests
- This CA-based PRNG was later shown to be vulnerable, improvements by choosing larger local rules [Leporati14]

Real world CA-Based Crypto: Keccak χ S-box

• Local rule: $\chi(x_1, x_2, x_3) = x_1 \oplus (1 \oplus (x_2 \cdot x_3))$ (rule 210)

Invertible for every odd size n of the CA

Used as a PBCA with n = 5 in the Keccak specification of SHA-3 standard [Keccak11]

Luca Mariot

- Goal: Find PBCA of length n and diameter d = n:
 - with cryptographic properties on par with those of other real-world ciphers [Mariot19]
 - with low implementation cost [Picek17]
- Considered S-boxes sizes: from n = 4 to n = 8
- Genetic Programming to address this problem
- Fitness function: optimize both crypto (nonlinearity, differential uniformity) and implementation properties (GE measure)

Table: Statistical results and comparison.

S-box size	T_max	GP			N _F	δ_F
		Max	Avg	Std dev		
4×4	16	16	16	0	4	4
5×5	42	42	41.73	1.01	12	2
6×6	86	84	80.47	4.72	24	4
7×7	182	182	155.07	7 8.86	56	2
8×8	364	318	281.87	7 13.86	82	20

- From n = 4 to n = 7, one obtains CA rules inducing S-boxes with optimal crypto properties
- Only for n = 8 the performances of GP are consistently worse wrt to the theoretical optimum

A Posteriori Analysis – Implementation Properties, n = 5

Table: Power is in *nW*, area in *GE*, and latency in *ns*. *DPow*: dynamic power, *LPow*: cell leakage power

Size	5×5	Rule	Keccak			
DPow.	321.68	84 LPow:	299.725 Area:	17	Latency:0.14	
Size	5×5	Rule	((v2 NOF	NOT(v4	l)) XOR v1)	
DPow.	324.84	9 LPow:	308.418 Area:	17	Latency:0.14	
Size	5×5	Rule	((v4 NAND	(v2 XOR	v0)) XOR v1)	
DPow.	446.78	32 LPow:	479.33 Area:	24.06	Latency:0.2	
Size	5×5	Rule	(IF(v1, v2, v4))	KOR (v0	NAND NOT(v3)))	
DPow.	534.01	5 LPow:	493.528 Area:	26.67	Latency:0.17	

Results on par with the Keccak χ S-box

Luca Mariot

Example of Optimal CA S-box found by GP

Intro – Al in symmetric crypto

Al-based optimization methods in cryptography

Al-based computational models in cryptography

Conclusions

Luca Mariot

Summing up:

- Up to now, AI-based methods and models can help in solving certain specific design problems for symmetric ciphers.
- Many more open directions remain!

Open questions:

- take into account other primitives (e.g. permutation layers)
- Have a better understanding of which algorithm works best to evolve a Boolean function/S-box with certain properties (using e.g. fitness landscape analysis)
- Apply AI to other optimization problems in symmetric crypto (e.g. rotation constants selection)

References

